HighProTech

DPCV HYL...Series

Differential pressure control valve (DPCV) can keep the differential pressure at two sides of load constant, that can improve the stability and accuracy, reduce the noise, and it's easy to balance and commission.

Product Features

Digital Handwheel

The DP can be set by rotating the handwheel and the number on handwheel can show the cycles which is easy for operation and convenient for debugging and recording.

• Build-in Diaphragm Capsule

The valve adopts the build-in diaphragm capsule which could make the valve smaller and significantly avoid damaging during installation.

◆ 3-port Test Plug with Close-off Function

Closing the test plug can avoid the tube from blocking during washing pipes. During normal use, keep the test plug open so as to achieve the balancing function of the valve.

♦ Stainless Steel Test Plug


There are stainless steel higher/lower test plugs on the valve body. which have higher strength and not easy to be damaged.

Type Overview

Type PN16	Type PN25	▲Pset	Caliber [in.]	DN [mm]	Kvs [m³/h]
HYL25-2VTC-30	HYL25-2VTD-30	5~30kPa	1"	25	6
HYL25-2VTC-70	HYL25-2VTD-70	25~70kPa	1"	25	6
HYL32-2VTC-30	HYL32-2VTD-30	5~30kPa	1-1/4"	32	9
HYL32-2VTC-70	HYL32-2VTD-70	25~70kPa	1-1/4"	32	9
HYL40-2VTC-30	HYL40-2VTD-30	5~30kPa	1-1/2"	40	14
HYL40-2VTC-70	HYL40-2VTD-70	25~70kPa	1-1/2"	40	14
HYL50-2VTC-30	HYL50-2VTD-30	5~30kPa	2"	50	21
HYL50-2VTC-70	HYL50-2VTD-70	25~70kPa	2"	50	21

Operating Instructions

- Description of spare parts number: (1) Capillary pipe
- (2) 3-port test plug
- (3) Air hole plug
- (4) (5) test plugs
- (6) Handwheel

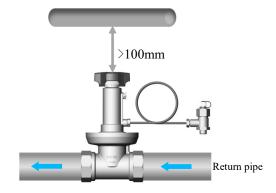
The 1st step: Connect capillary pipe (1). As shown on the left, one end of capillary pipe connects DPCV, the other end connects low end of Static balancing valve through the 3-port test plug (2), at this time, system should be in a state of low pressure.

The 2nd step: Open the valve air hole plug (2), then open the 3-port test plug (2), until there is water flow out, lock the air hole plug after all the air in the valve body is discharged.

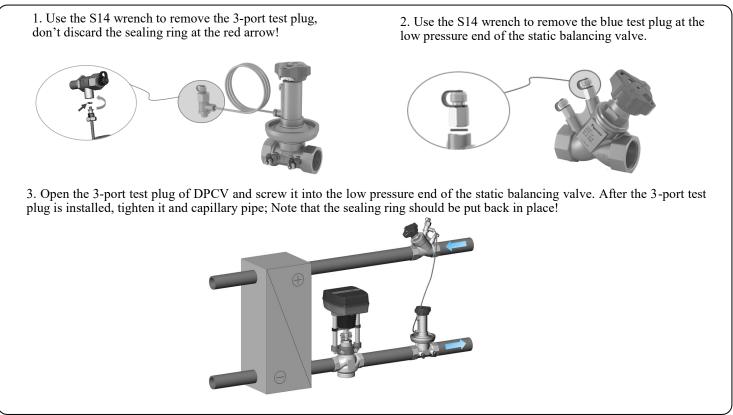
The 3rd step: As shown on the left, use a digital DP meter to measure the DP on both P2, P3 ends, that is Δ Pset.

The 4th step: Set ΔP set, the DP can be set by rotating the handwheel(6), accurately adjust can be made according to the data of digital DP meter.

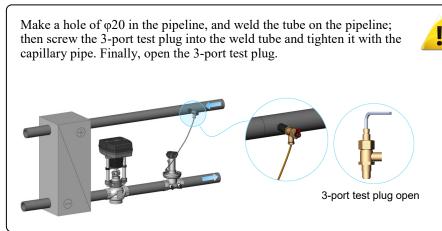
Test plugs(4) (5): Remove the cover and insert probe into self-sealing test plugs, (4) is the High Pressure End, (5) is the Low Pressure End. Capillary pipe (1): the factory default length is 1m, if longer one is needed, 2m capillary pipe is optional.


Attention! Must use matched capillary pipe.

Installation Instructions



Note:


- 1. DPCV must be installed on the return pipe.
- 2. Pay attention to the medium flow direction, which is complied with the flow mark on the valve body!
- 3. Valve installation should be reserved enough space, it's easy to debug and maintenance.

When there is a static balance valve in the system, the 3-port test plug is connected to the low pressure end of the static balancing valve (i.e. replacing the blue test plug on the static balance valve). The installation steps are as follows:

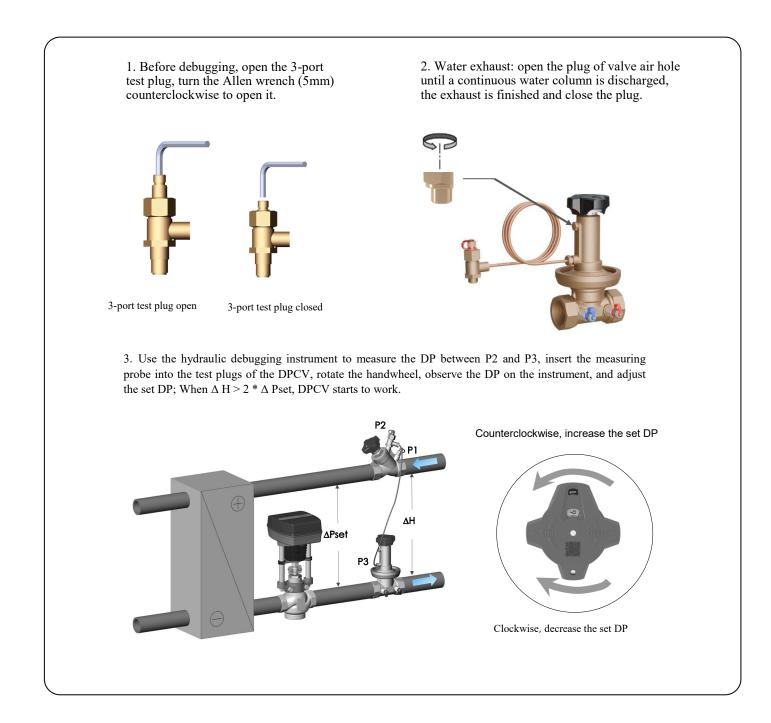
 If there is no static balancing valve in the system, the 3-port test plug should be directly connected to the pipe through the weld tube. The installation steps are as follows:

Note:

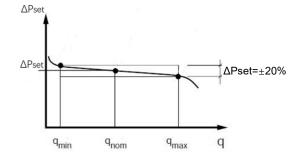
1. The 3-port test plug can't be welded directly on the pipe, high temperature will damage the internal parts during welding, welding tube and pipe must be welded first, then connect the 3port test plug.

2. The pressure hole should be taken from the horizontal side of the pipeline center line, and shouldn't be placed at the upper or lower end of the pipeline. The upper end installation may lead to the inaccurate pressure taking if pipeline is not full flow, the lower end installation may cause the pressure pipe is blocked by dirt.

Debugging Instruction


Note:

1. Check whether the valve is in a fully open state before the water and pressure test of the pipeline, you can use a hexagonal wrench to counterclockwise tighten it and the valve is fully open. Usually the factory default state is fully open.


2. Make sure that the 3-port test plug is installed on the low pressure end of the static balancing valve and it is in the open state. See Step 1 for details!

3. Rotate the handwheel counterclockwise to the Max. DP set value to prevent the valve closed when the pressure is too high during pressure test

4. Exhaust all the air in the valve body before debugging. See Step 2 for details!

Working Range

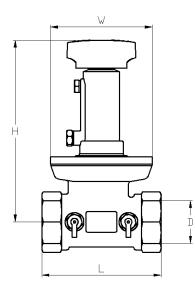
Type Selection

- 1. Select the desired $\Delta Pset$ from the tables.
- 2. Select the same size of the valve as the pipe.
- Check the desired flow is smaller than the specified q_{max}, if not, select the most similar large dimension, or a larger ΔPset The table work in the following situation:
 - $\Delta H \ge 2x \Delta Pset$, the valve will work effectively from $2x \Delta Pset$ to $250 kPa + \Delta Pset$

$\Delta Pset: 5 \sim 30 kPa$

$q_{\text{min}}\!/q_{\text{nom}}\!/q_{\text{max}}(m^3\!/h)$

ΔPset	:	5 (kPa)			15 (kPa))	2	0 (kPa)		2	.5 (kPa)		3	0 (kPa)	
DN	qmin	qnom	qmax	qmin	qnom	qmax	qmin	qnom	qmax	qmin	qnom	qmax	qmin	qnom	qmax
25	0.12	1.02	1.38	0.25	1.68	2.25	0.31	1.94	2.74	0.35	2.31	3.24	0.42	2.52	3.53
32	0.22	1.79	2.53	0.27	2.84	4.06	0.32	3.28	4.86	0.41	3.85	5.42	0.48	4.35	6.14
40	0.26	2.84	4.03	0.45	5.23	7.23	0.52	6.14	8.42	0.61	6.85	9.14	0.69	7.32	10.23
50	0.46	4.62	6.32	0.63	8.21	11.42	0.71	9.54	13.16	0.82	10.63	14.86	0.92	11.52	16.23


ΔPset: 25~70kPa

 $q_{min}\!/q_{nom}\!/q_{max}(m^3\!/h)$

ΔPset		25 (kPa)			30 (kPa)			40 (kPa)			50 (kPa)	
DN	qmin	qnom	qmax									
25	0.32	2.33	3.27	0.44	2.56	3.57	0.54	2.93	4.18	0.59	3.37	4.72
32	0.34	4.11	5.46	0.46	4.54	6.24	0.63	5.14	7.16	0.78	5.73	8.06
40	0.53	7.06	9.75	0.56	7.62	10.35	0.67	8.65	12.19	0.82	8.83	13.86
50	0.75	10.83	14.86	0.84	11.82	16.32	0.98	13.7	19.13	1.13	15.02	20.96

ΔPset		60 (kPa)		70 (kPa)			
DN	qmin	qnom	qmax	qmin	qnom	qmax	
25	0.68	3.64	5.12	0.76	3.96	5.52	
32	0.83	6.32	8.93	0.91	6.81	9.45	
40	10.92	10.54	14.86	1.02	11.55	15.87	
50	1.35	16.85	22.86	1.56	17.94	24.83	

Dimension

DN [mm]	D	L [mm]	W [mm]	H [mm]	Weight [kg]
DN25	1"	100	98	168	2.14
DN32	1-1/4"	102	98	172	2.35
DN40	1-1/2"	115	98	176	2.77
DN50	2"	125	98	182	3.17

Technical Parameters

Functional Data	
Nominal Size	DN25-DN50
Nominal pressure	PN16/PN25
DP range	5-30kPa/25-70kPa
Max. operating DP	≤250kPa
Connection standard	Female threaded connection (comply with ISO7-1)
Medium temperature	2~130°C
Medium	Chilled/hot water, glycol solution under 50%

• Spare Parts Materials	Spare Parts Materials					
Body	BCuZn39Pb2					
Core	Brass					
Stem	Brass					
Diaphragm	EPDM					
Handwheel	РА					

TIPS!

Information contained in this document, such as product design, specifications, or appearance, is subject to change without notice. This information is for reference only, please prevail in kind when buying.